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Abstract. Spin reorientation process in the quasi-one-dimensional easy-plane antilerro- 
magnet on a stacked triangular lattice has been considcred theoretically and studied in an 
experiment on CsMnBr,. The second-order phase transition associated with the flip of two 
pairs of sublattices has been shown to persisl i f  rhe magnetic field iscanted at an angle $? 
from the basal plane. The field and angular dependence5 of the magnetic torques measured 
at T = 1.8 K. although in qualitative agreement with the classical theory, demonstrate a 
strong effect of quantum fluctuations. 

1. Introduction 

Theground-state magneticpropertiesof the quasi-one-dimensional antiferromagnets on 
a stacked triangular lattice are currently of great theoretical and experimental interest. 
Initially this was stimulated by Haldane's 111 conjecture about the singlet ground state 
of the weakly anisotropic ID antiferromagnetic array of integer spins, but now much 
attention has been attracted also by the peculiarities associated with the non-collinear 
spin arrangement occurring in these systems at T i  TN owing to the influence of weak 
interchain exchange. 

The spin systems of most hexagonal halide compounds ABX, (A being an alkaline 
metal, and B a metal of the 3d group) with space symmetry group D h  can be treated as 
a set of weakly coupled linear antiferromagnetic chains disposed on a triangular lattice 
in the basal plane. Numerous experiments (ENS and NMR) indicate that the majority of 
such compounds (CsNiCI,, RbNiCI,, CsMnBr,, &VI3, etc) experience, at T <  TN, 
triangular magnetic ordering; adjacent spins in the basal plane form an angle close to 
120" with each other while spins in each chain are antiparallel. Anisotropic interactions 
of relativistic origin usually choose the chain direction to be easy (as in CsNiCI, or 
RbNiC1,) or hard (CsVI, and CsMnBr,) axis. The magnetic properties of such com- 
pounds are believed to be well described by the Hamiltonian (the Z' axis being along 
C, (figures 1 and 2)) 

ae = JX' YiYi + J' X Y i Y j  + D X  (Ypi')2 - y H 2  Yl .  (1) 
1.1 i.i i i 

The first term here describes the intrachain exchange interaction, the second the 
exchange in the basal plane, and the third and fourth the anisotropy energy and Zeeman 
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energy of the spins, respectively, in the external field H .  In the present paper we shall 
consider the case of the easy-plane antiferromagnet: J > 0, J’ > 0, D > 0. Quasi-one- 
dimensionality implies the smallness of the ratio J’ /J  which, as well as D/J, is usually 
about 10-2-10-3. 

Recent classical calculations [2. 31 of the reorientation process in such a system 
starting from the Hamiltonian (1) have shown that the principal parameter to define the 
course of reorientation is d = D/3J’. If the increasing magnetic field is applied in the 
basal (easy) plane of the compound with d > 1 (strong planar anisotropy outweighs 
weak interchain exchange J ’ ) ,  then spins remain in the basal plane and at H = H ,  = 
(4SS’JJ’)”’ the second-order phase transition associated with the flip of two pairs of 
sublattices occurs. If under the same conditions d < 1 is the case, then at H = 
NI‘ = (l6S2JD)”? < H ,  the planar arrangement becomes unstable and the first-order 
spin-flop transition takes place; spins tilt from the basal plane to become almost per- 
pendicular to the field. Then, as the field increases. at H :  (close to the saturation field 
Hr‘ if d is not very close to unity), the second-order spin-flip transition like that in the 
cased > 1 happens. Subsequent reorientation in both cases proceeds in a similar way; 
all spins smoothly cant to the field direction saturating at H = H:a’.l = 8SJ + 18SJ‘. If 
the magnetic field is applied along the hard axis C,, the spin reorientation for any value 
of d is not accompanied by any phase transition until the full saturation of H = 
H,W‘.I = 8SJ + 18SJ‘ + 2SD. 

If in the cased < 1 the magnetic field is applied at some non-zero angle p, to the basal 
plane. the instability of spin arrangement at H:‘ disappears and the first-order transition 
isabsent (just asinthecaseofthespin-flopin theeasy-axiscompoundCsNiCI, [4]). The 
main purpose of the present investigation was to study the spin reorientation process in 
the case d > 1 (it is believed to correspond to CsMnBr,, in which the fit of the classical 
expressions to the measured AFMR frequencies yields J 1 214 GHz, J’ = 0.5 GHz and 
D = 1.95 GHz [SJ) when the magnetic field is applied at an auxiliary angle p? to the basal 
plane. 

2. Classical theory 

A classical ground-state spin configuration is obtained through the minimization of (1) 
with the spin operators 9 (where Y2 = S(S + 1)) substituted by the classical vectors of 
size S. First we consider the situation far from saturation: H e  HF’(p) 

Because of the non-zero field component in the hard-axis direction, spins leave the 
basal plane from the very start of the reorientation. In contrast with the case of the spin- 
flop transition at d < 1, in our case spin flip as described above takes place in the canted 
field but at some highcr H = H,(p?). In the leading order in D/J,J’/J and H / H ,  we have 

H ,  = 8SJ. 

H : ( g , )  = H t ( d  - l)/(dcosa g, - 1) H: = 48S2 JJ‘ (2)  
and the angles designated in figures l(a) and l ( b )  are the following: 

a. =~np - (H/H, )  cos p? (/3 + y ) / 2  = 7 ~ / 2  - ( H  COS 9: COS f ) / ( H ,  COS q) 

p?, = n/2 - (H/H, )  sin p (3) 
(9.. + p,)/2 = n/2 - (H/H,) (sin p, cos q - cos 9: sin q sin 5 )  
where ( p  - y ) / 2  = 5 and (q2 - q3)/2 = q are given by the equations 

cos 5 = [(l + A2)/(1 + B2)]’’2 cos q = (A/B)[(l + B2)/(1 +A’)]’/’ at H .s H,(p) 
( 4 4  
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Figure 1. (0) The orientations of the sublattice spins 
in the crystallographic coordinate system X'Y'Z' at 
H < If,. (b )  Orientation of the basal-plane pro- 
jections of the sublattice spins at H < H,. (c)  The 
orientations of the sublattice spins in the crys- 
tallographiccoordinate systemX'Y'Z'at H >  H,. 

and 

cos e = 1 c o s q = l  at H 2 H,(e;). (4b) 

Here He = 8SJ as introduced above, and A and B are defined by 

A = Y - (1 + P)''' 
Y = [z cos(2q) - dj/[z sin(2q)l z = (H/HJZ. 

B = A(2 - z cosz rp) - z sin q cos rp 
(5)  

As the field increases (but at H* He), the angles a, fJ + y ) / 2 ,  q 1  and (qz + q3) /2 
almost do not change and are close to z/2, while the angles p - y and qz - rp3 (in fact, 
the angle between sublattices 2 and 3 as well as between 2' and 3' in figure I@)) undergo 
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a quick change and in our case d > 1 turns into zero at the critical field. Equation (2) 
for the critical field H,(cp) corresponds to the condition B' 2 A*, that is essential for 
equations (40) to be valid. When cp is increased. H,(cp) increases, rising to infinity at 
Q' = rpC = cos(l/fld), which means that our approximation fails and H, becomes 
approximately equal to H ,  instead of being much smaller as was presupposed. To 
investigate the correct behaviour of H,(cp) if it is not small in comparison with U,. we 
have performed another expansion of the equations minimizing (1). I n  the vicinity of 
the flip transition keeping terms to the first non-vanishing order in i, q + 0 we derived 
the critical tield for the transition to be given by the real root of 

(H'/Ht)[l - (U'/45)(t + l)][(c + dcos' q)/2 - 1 + (D/U)(2 - f) sinZ cp] 

= (35'/81)(2 - r)(f  - 2 + d) ( 6 )  
{(f - l ) [ l  - (H'/H:)(l - ( D / U )  sin'cp)] = (Y'/U)(H2/H$)(2 - P). 
The parameter f in these equations denotes the ratio 

t =  [(sin cp,)/(sin cpz)][(sin m)/(sinP)]. (7) 
If d is not very close to unity, one can obtain the following: if d cos cp 3 1 i 35'/2/. then 
f = 1 and H,(cp) is given by (2); i f  dcos cp S 1 - 35'/21, then I = 2 - dcos' cp. and 

H,(cp) = H,{1 - ( D i u )  sin2 cp + (35'/21)[2 - r"/f(f - 1)]}-'1', (8) 
Note that the last expression is also correct in the case d < 1. The subsequent reori- 
entation up to saturation proceeds in the same way as in [2,3] (see figure l(c)) with 

cos@= (H/H,)[(coscp)/sin cp,)]{l - (35'/21)[(1 + r ) j r ] ]  

cosp = (H/H,)(cos cp)/(sin c p z ) { l  - (35'/21)[(1 + f)/2]} 

cos rp, = (H/H,) sin cp {l - (35'/21) [(l t r)/r] - D/44 

cos rp2 = (H/H.) sin cp 11 - (U'/21)[(1 + 9/21 - D / W }  

(9)  

where I is given by (7). Implying a, 0- 0 and p?,. cp?+ p? one obtains f =  2 and the 
saturation field to be H:"'(cp) = 8JS + 18J'S + 2DSsin' p?. 

Considering figures l(a) and l(b), one can easily derive the following expressions 
for the basal plane A{.: and the hexagonal axis M: components of the net magnetic 
moment per mole: 

M.; = g,u&"S(H/H,) 3[(3 - 2sin' 5 cos' 7) cos cp -sin i sin(7,q) sin cp] 

1!4: = gp&"S(N/HJ 1[(1 + 2 cos' q )  sin cp - sin tsin(2q) cos cp] 

where pB is the Bohr magneton and N ,  the Avogadro number. In experiment we 
measure the longitudinal (along the field) M, and the transverse M, magnetic torques 
(figure 2 )  which are given by 

(11) 
Curves obtained through the substitution of (4)-(6) into (11) are drawn in figures 3 and 
5 as broken curves. At H = H,(rp) they demonstrate a break inherent to the second- 
order phase transition. When the field is approaching its critical value. the transverse 
magnetization M,(H) drops rapidly to become zero at N 3 He while the relative changes 
in M,(H) are not so pronounced. 

(10) 

M,? = M: cos ip + M: sin p? My = -Mi  sin U, t nl: coscp. 
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Figure 2. The mutual orientation of the sample 
X'Y'Z and experimental (tied to the pick.up coils 
which are denoted by the open circles) XYZ mor- 
dinate systems. 9 

3. Experimental procedure and results 

To verify the results of our calculations we have undertaken a set of magnetostatic 
measurements on CsMnBr, samples. The large single crystals of CsMnBr, were grown 
from a melt by the Bridgman techniques with subsequent annealing as described in 151. 
The crystals cleaved excellently down the binary planes and were quite hygroscopic and 
so had to be handled with caution. The samples to be investigated were orthogonal 
prisms with the linear dimensions 1-2 mm. They were cleaved from the inside of the 
bulk single crystals just before the experiment and stuck with polystyrene glue to avoid 
hydration. However, in late spring, when the air became mild and damp, the intensive 
moisture condensation made it almost impossible to obtain a good unhydrated sample 
with such a straightforward procedure. Here we shall report the experiments performed 
in winter and early spring with good samples. 

The magnetic torque measurements were taken using a triple-axis vibrating-sample 
magnetometer with a 75 kOe superconducting magnet [6].  The specimen was attached 
with its binary plane to the platform which vibrated along the vertical 2 axis and which 
could be rotated around this axis. The magnetic field was applied along the horizontal 
Xaxis. In this set-up the hexagonal C, axis of the crystal always lies in the horizontal X- 
Yplane aodcan bedirected at anangle in therange il35"withrespect to the field(figure 
2). Three pairs of pick-up coils permitted the simultaneous measurement of the three 
orthogonal components of the magnetic moment, but use was made of only X and Y 
coils to measure the component MI along the magnetic field and the component My 
perpendicular to it and lying in the plane containing the field and the C, axis which we 
believed to be given by (1 1). 

The magnetization curves M,(H) and M J H )  obtained at T =  1.8 K Q TN at some 
angles e, between H and C, are shown in figures 3 and 4. The break corresponding to 
the second-order transition at H J q )  was very pronounced on all M J H )  curves until 
H,(q) remained inside the range of our experiment. Since the magnitude of the trans- 
verse magnetization is small (M,(H) S 0. IM,(H) at q S W ) ,  the experimental error in 
its measurement was about 10 times larger than that of the longitudinal magnetization 
which was 1% or less. The installation was calibrated using a superconducting lead 
cylinder of m = 0.45 5 0.02 mg with a ratio of length to diameter of about 30 at T = 
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Figure 3. The longitudinal magnetizations M<(H)  a1 T = 1.8 K. 

Figure4.The transversemagnetizationsM,(H)at T =  1.8K. 

4.25 K with an absolute accuracy of about 6%. Hence, the resultant accuracy of the 
determination of the absolute values of molar susceptibilities in our experiment was 
about 6% for MX(w and about 11% for M,(H). 

Another way to investigate the spin-flip transition at HJq) is to measure the trans- 
verse magnetization My(g,) in the constant applied field H > H, when the angle g, is 
varied. To perform such experiment, we equipped our magnetometer with a special 
circuit to produce a voltage proportional to the angle q. The resultant curves for some 
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different values of H are presented in figure 5. In the flipped phase (at small angles 
rp < qc(H)), M,(q?) grows linearly and slowly with rp. At q = q , ( H )  it exhibits a break 
and then a steep increase to become approximately sinusoidal at rp 3 45". 

4. Discussion 

As is evident from figures 3-5 the classical theory developed in section 2 adequately 
describes the general features of the spin reorientation process in the quasi-one-dimen- 
sional hexagonal antiferromagnet CsMnBr, in the arbitrarily oriented magnetic field. 
The angular dependence of the critical field H,(p?) (figure 6) is within the range of our 
experiment in good agreement with equation (2) if we take d = 1.8 (full curve in 
figure 6). although there are important divergencies between the classical theory and 
experiment that need to be considered. 

First, the measured magnitudes of the molar magnetic torques are about 1.5 times 
smaller than those obtained from the classical theory if we use the same parameter He 
as in the resonance measurements [ 5 ]  and d = 1.8, which is far beyond our experimental 
error. It should be mentioned that the absolute values obtained in our experiment agree 
within 6% with the results of the measurement of M,(H) when HI1 C6 by Goto et a1 [7], 
although Kotyuzhanskii and Nikiforov [SI reported different values. In our opinion, 
such a large discrepancy between the classical calculations and experiment has to be 
attributed to the influence of the quantum fluctuations which were ignored in section 2. 
It was shown earlier on the basis of the 1/S expansion [2] that the quantum corrections 
to the classical frequencies of the antiferromagnetic resonance in such system cause only 
the parameters J ,  J' and D of the Hamiltonian (1) in the resultant formulae to be 
substituted by their renormalized valuesj, .f' and d which are obtained from the fit to 
the experiment. In fact, AFMR measurements [5] gave the renormalized value d = D/ 
3.f' = 1.3 (somewhat lower than 1.8), but the classical value to be used in classical 
approximation can roughly be estimated through d = d(S/(S))(l - l/ZS)-' = 2.46 [l]. 
Therefore, if we use the classical expressions to fit the magnetic torque measurements, 
we also must expect some renormalized value of d ,  which may differ from that derived 
from the resonance. We believe that d = 1.8 is the 'corrected' value ford that should be 
involved instead of the classical value in the expressions for magnetizations given in (3)- 
(1l)t. Direct calculation of the quantum corrections to the ground-state configuration 
of the quasi-one-dimensional triangular antiferromagnet in the magnetic field is a highly 
complicated and to date unresolved problem, but its most apprecislble effect is known 
to be the sublattice spin contraction. As was established by the neutron diffraction 191 
the magnitude of the Mn2+ (S = 3) magnetic moment in CsMnBr, in zero external field 
extrapolated to T = 0 K (and at T = 1.8 K already) is only about 3 . 3 ~ ~  instead of 5fiB 
demonstrating substantial zero-point spin deviation ( ( S )  ~ 1 . 6 5 ) .  Our results indicate 
that we can roughly take quantum corrections into account if we multiply our classical 
expressions for the magnetizations with the renormalized He as derived from the AFMR 
and INS experiments and d = 1.8, by the relative spin reduction (S)/S (figures 3-5). 

t It should be mentioned that the magnitude of the magnetization if the classical expressions are used is 
sensitive mainly to the renormalization of H ,  which is only about 8% fors  = 1, being equal (n - 2)/2nS in the 
first order in 11s 121. 
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d=1.6 
... 6=1.3 
- 

55-0 Figure6. The angular dependence of the critical field 
'p WPl). 

The other discrepancy which cannot be accounted for through the simple multi- 
plication by (S)/Sis the visible deviation of the functional dependencesof the longitudinal 
magnetization M,(H) from the classical formulae giving ?he 10% anisotropy between 
M: (when H is nearly perpendicular to the basal plane. the upper curve in figure 3) and 
M? (when H almost lies in the basal plane, the lower curve) at H 2 H,. This anisotropy 
naturally revealsitself also in the transverse magnetization dependences, causingMy(q) 
at H 3 H,  to have a finite slope at Q S pl. instead of being equal to zero (figure 5) and 
M,(H) at q > 0 to have a non-zero value at H 2 H ,  (figure 4). To describe these 
peculiarities of the magnetization curves, accurate consideration of the anisotropy of 
quantum fluctuations and their dependences on the magnetic field is necessary. 
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